Instruction Guide # **01.Kit Content** DSO Module Instruction Guide Single Channel Cable Dual Channel Cable Oscilloscope Probe Adjustment Tool Identification Ring Positioning Sleeve ## **02.Operation Steps** 1. Take one of the single-channel dedicated cable. Follow the instructions below to insert to the DSO module and logic analyzer LAP-C respectively. Please note: the connection line to the right of the LAP-C is the VDD and control lines # 03.Initial setting - 1. DSO module initial setting: (Please refer to Note 1: DSO module panel) - 4 CH1 VOLT/DIV select 2V /200mV - ŧ - NAMPLING CLOCK select 2.5MHz - Ŧ - RIGGER select CH1 - 2. Starting software Install software of LAP-C and start it. (See LAP-C manual, we omitted this part here, do not repeat) Please use the V3.14.03 version or newest version. - 3. Software initial setting: (Please refer to Note 2: Software User Interface) - MSO(M) select Single channel. Memory select 2K. Memory select 2K. Sampling Frequency select 2.5MHz. - 4. Press start oscilloscope waveform display, CH1 will show a parallel line (the figure shown as below.) because at this time we did not enter the signal. If the time baseline is not on the 0V scale line, please adjust the CH1 0V ADJ with a adjustment tool to move the time baseline to 0V position. #### 5. Probe stick compensation correction Please connect the oscilloscope probe to CH1, kindly adjust the switch of 1 X1 / X10 that in front of the probe to be X10, and hook the test hook to correction output terminal.A square wave of more than one cycle is displayed, as shown in the following figure. # **Probe stick compensation correction** If the square wave is not very square, it may be phenomenon that a probe has been overcompensated or undercompensated. This will affect the oscilloscope measurement waveform error. Please use the adjustment tool to adjust the square wave to the most square. ## Note 1: DSO module panel 1. POWER LED After connecting the DSO module and LAP-C, connect LAP-C with your computer, the power indicator (PWR) on the DSO module will be illuminated. | 2. TRIGGER LEVEL | By manually adjusting the trigger level knob, you can change the trigger start point position of the displayed waveform. To "+" direction of rotation, the trigger point will move to the positive voltage position. To "-" direction of rotation, the trigger point will move to the negative voltage position. | |--------------------------|---| | 3. <u>CH1 /2 0V ADJ</u> | When the vertical 0V position of CH1 or CH2 is offset, you must adjust the knob with a adjustment tool to align it with the 0V scale line on the display screen. | | 4. CH1 /2 Vertical SCALE | This switch can be set to CH1 or CH2 vertical scale. Its stalls are "VOLT/DIV" for the vertical scale factor. When the probe is (X10), the vertical scale is with 5V / DIV, 2V / DIV, 1V / DIV for choice. When the probe is (X1), the vertical scale has 500mV / DIV, 200mV / DIV, 100mV / DIV for choice. In general measurement of TTL or CMOS digital signals, usually vertical scale is set at 2V / DIV (probe X10) is more appropriate. Please kindly note that the setting of this switch must also be consistent with the vertical scale display on the software UI. | | 5. <u>CH1 /2 INPUT</u> | Input the connector for the display waveform. | | 6. Prob Compensation | The probe compensation outputs a square wave of about 2 kHz, 3.3 Vpp which is used to adjust the compensation of the probe to match the input circuit of the oscilloscope. | | 7. <u>SAMPLING CLOCK</u> | This switch can select the oscilloscope sampling frequency including 100MHz, 50MHz, 25MHz, 10MHz, 5MHz, 2.5MHz, total of 6 for choice, each frequency can be in accordance with the test object of high frequency or low frequency signal to appropriately select higher sampling frequency or lower sampling frequency. Please note that the setting of this switch must also be consistent with the sampling frequency on the software UI. | | 8. TRIGGER Source | This switch can select CH1 or CH2 as the trigger signal for the oscilloscope. | ## **Note 2: Software User Interface** #### 1. Scope Mode Click this MSO (M) to enter the oscilloscope mode. And it will display the waveforms of the DSO and LA logical channels simultaneously in real time. According to LAP-C different number of channels of model number, below lists are the maximum number of DSO channels and LA channels can be provided. | MSO (M) | LAP-C 32xxx series | LAP-C 16xxx series | |-----------------------------|--------------------|--------------------| | Oscilloscope single channel | DSO 1ch + LA 23ch | DSO 1ch + LA 7ch | | Oscilloscope dual channel | DSO 2ch + LA 16ch | DSO 2ch | | Measure | CHI | | |------------|-----------|--| | Vmax | 3.31 V | | | Vmin | 0.00 V | | | Vtop/Vhigh | 3.28 V | | | Vbase/Vlow | 0.03 V | | | Vpp | 3.31 V | | | Vampl | 3.25 V | | | Vrms | 2,31 V | | | Vavg | 1.65 V | | | +Overshoot | 0.01% | | | -Overshoot | 0.01% | | | Vmid | 1.66 V | | | Frequency | 2,44 KHz | | | Period | 409.60 us | | | +Width | 204.80 us | | | -Width | 204.80 us | | | +Duty | 50% | | | -Duty | 50% | | | Rise time | 0.40 us | | | Fall time | 0.40 us | | If the waveform sampling is stopped, click the "Waveform Measurement" function in MSO (M).Then the 19 waveforms of CH1 or CH2 are displayed as below. #### 2. Run/ Stop Press can capture the waveform continuously. stop capturing. ### 3. Zoom In/Out Press can zoom out the waveform. Waveform zoom, is refer to the center of the window to zoom in or out, and can be operated when the waveform is sampling or paused. ### 4. Memory Depth There are several kinds of memory depth: The depth of the size will affect the waveform display update rate, if select 2K- the fastest, if select 32Krelatively slow, the general recommended memory depth is 16K. #### 5. Sampling Clock This switch can select the oscilloscope sampling frequency including 100MHz, 50MHz, 25MHz, 10MHz, 5MHz and 2,5MHz, total of 6 for choice. Each frequency can be in accordance with the test object of high frequency or low frequency signal to appropriately select higher sampling frequency or lower sampling frequency. Please note that the setting of this Sampling Clock must also be consistent with the sampling frequency on the DSO module. ### 6. Time Cursor Move the A-bar and B-bar pairs of cursors, you can read the displayed time value to measure. There are three numerical modes that can be selected; time, sampling point, and frequency. ### 7. Vertical Scale This switch can be set to CH1 or CH2 vertical scale. Its stalls are "volts / per grid" for the vertical scale factor. When the probe is (X10), the vertical scale is with 5V / DIV. 2V / DIV and 1V / DIV for choice. When the probe is (X1), the vertical scale has 500mV / DIV, 200mV / DIV and 100mV / D for choice In general measurement of TTL or CMOS digital signals, usually vertical scale is set at 2V / DIV (probe X10) is more appropriate. Please kindly note that this setting must also be consistent with the vertical scale display on DSO. #### 8. Voltage Cursor CH1 and CH2 respectively have a pair of horizontal axis cursor (two red dotted lines as shown in below). You could move this cursor to read the displayed voltage parameters for measurement. Such as measuring the peak-to-peak or DC voltage of the waveform. ### 9. Trigger Level By manually adjusting the trigger level knob, you can change the trigger start point position of the displayed waveform. To "+" direction of rotation, the trigger point will move to the positive voltage position. To "-" direction of rotation, the trigger point will move to the negative voltage position. The left side of the trigger point is the pre-trigger signal. #### 10. Trigger Condition Mining all signal period. it won't do any signal trigaering decision. Trigger on the rising edge edge of the waveform. Trigger on the high level of the waveform. Trigger on the falling Trigger on the low level of the waveform. edge of the waveform. Trigger on the rising or falling edge of the waveform. ### 11. Trigger Mode Auto: The oscilloscope will automatically capture the signal regardless of whether the trigger condition. Normal: The oscilloscope will capture the signal which is satisfied the rigger condition. Single: The oscilloscope will capture the signal which is satisfied the rigger condition, but it only captures one time. 3F., No.121, Jian 8th Rd., Zhonghe Dist., New Taipei City 23585, Taiwan Tel:+886 2-66202225#223 Fax:+886 2-22234362 sales@zeroplus.com.tw **ZEROPLUS**